Jacketed Reaction Vessel, Limpet Coil Vessel, Jacketed Pressure Reaction Vessel, Pressure Vessel, Jacketed Vessel

Jacketed Reaction Vessel

Stainless Steel Jacketed Reaction Vessel
Jacketed Chemical Vessel
Reaction Vessel

In chemical engineering, a jacketed vessel is a container that is designed for controlling the temperature of its contents, by using a cooling or heating "jacket" around the vessel through which a cooling or heating fluid is circulated.

A jacket is a cavity external to the vessel that permits the uniform exchange of heat between the fluid circulating in it and the walls of the vessel. There are several types of jackets, depending on the design:

  • Conventional Jackets. A second shell is installed over a portion of the vessel, creating an annular space within which cooling or heating medium flows. A simple conventional jacket, with no internal components, is generally very inefficient for heat transfer because the flow media has an extremely low velocity resulting in a low heat transfer coefficient. Condensing media, such as steam or Dowtherm A, is an exception because in this case the heat transfer coefficient doesn't depend on velocity or turbulence, but instead is related to the surface area upon which the media condenses and the efficiency of removing condensate. Internals include baffles that direct flow in a spiral pattern around the jacket, and agitating nozzles that cause high turbulence at the point where the fluid is introduced into the jacket.
  • Half-Pipe Coil Jackets. Pipes are split lengthwise, usually with an included angle of 180 degrees (split evenly down the middle) or 120 degrees, then wound around the vessel and welded in place.
  • Dimple Jackets. A thin external shell is affixed to the vessel shell with spot welds located in a regular pattern, often about 50 mm on center both horizontally and vertically. These so-called dimples impart turbulence to the heating or cooling media as it flows through the jacket.
  • Plate Coils. Often very similar to dimple jackets, but fabricated separately as fully contained jackets that are then strapped to a vessel. They are slightly less efficient than dimple jackets because there is a double layer of metal for the heat to traverse (the plate coil inside surface and the vessel shell). They also require good bonding to the vessel jacket, to prevent an insulating gap between the plate coil and the vessel.

Jackets can be applied to the entire surface of a vessel or just a portion of it. For a vertical vessel, the top head is typically left unjacketed. Jackets can be divided into zones, to divide the flow of the heating or cooling medium. Advantages include: ability to direct flow to certain portions of the jacket, such as only the bottom head when minimal heating or cooling is needed and the entire jacket when maximum heating or cooling is required; ability to provide a higher volume of flow overall (zones are piped in parallel) because the pressure drop through a zone is lower than if the entire jacket is a single zone.

Jacketed vessels can be employed as chemical reactors (to remove the elevated heat of reaction) or to reduce the viscosity of high viscous fluids (such as tar.

Agitation can be also used in jacketed vessels to improve the homogeneity of the fluid properties (such as temperature or concentration).

We manufacture Reaction Vessel from 50 Ltrs to 20 KL in Material of construction Mild Steel, Stainless Steel SS 304 or SS 316.

Jacketed Reaction Vessel consist of a Cylindrical vertical shell with standard torospherical dish on both ends.

A jacket is provided on the Outside of the shell for Heating the reactor by passing steam or thermic Oil. or Cooling the reactor by passing cooling media. Stiffener Rings are provided on shell in between the shell and jacket to give uniform circulation of the heating or cooling media and to intensify the vessel.

Agitator assembly mounted on the Top dish of Reactor consists of Shaft supported by Lantern Assembly on the Top End containing Bearing Housing with Tapered roller bearing and Ball bearing to withstand impact load and vibratory load ensuring smooth rotation of the Shaft. Water cooled Stuffing box filled with gland rope pressed by Gland pusher is also provided.

On the other end of the shaft Blade is fitted of different types as per the need of the Process viz. Single Anchor, Double Anchor, Gate, Paddle, Flat or Curved Turbine & Propeller types. Baffles are also provided inside the shell as per the requirement.

Top Dish of the Reactor is provided with various Nozzles viz. Manhole, Light Glass, Sight glass, Vapour, Addition, Reflux, Thermowell etc.

Bottom Dish of the Reactor is provided with an Outlet nozzle where valve is fitted.


Chemical processing machinery, Jacketed reaction Vessel, Condensor, Heat Exchangers, Ribbon Blender Mixer,Sigma Mixer,High Speed Mixers

  Products Range
  ETO Sterilizer
  Horizontal Rectangle Autoclave
  Horizontal Cylindrical Autocalve
  Sliding Door ETO Sterilizer
  100% Pure ETO Gas Cartridge
  4.5 CFT CATH LAB ETO Sterilizer
  Ethylene Oxide Sterilizer
  Pharmaceutical Machienry
  Mass Mixer
  Octagonal Blender
  Paste Kettle
  Mixing Vessel
  Syrup Manufacturing Plant
  Homoginizer / Emulsifier
  Membrane Filter Holder
  Paint Machinery
  Twin Shaft Disperser
  High Speed Disperser
  Ribbon Blender Mixer
  Sigma Mixer
  Ball Mill
  Pug Mill
  Bead Mill
  Chemical Machinery & Equipment
  Reaction Vessel
  Jacketed Reaction Vessel
  Condensor / Heat Exchanger
  Tray Dryer Machine
  Resin Plants
  Pilot Reaction Vessel
  Resin Plants
  Alkyd Resin Plants
  Polyester Resin Plant
  Tray Dryer Machine
  Resin Plants
  Pilot Reaction Vessel

Home  |  About Us  |  Products  |   Enquiry  |  Contact Us  |  Sitemap |  Links
© 2013 Ambica Boiler & Fabricator
Reaction Vessel Manufacturer, Limpet coil Vessel Manufacturer